论文标题
电击引起的加热和高超音速边界层的湍流过渡
Shock-induced heating and transition to turbulence in a hypersonic boundary layer
论文作者
论文摘要
使用直接数值模拟(DNS)和壁模型的大型涡流模拟(WMLES)以不同角度以不同的角度来解决入射冲击波与不受干扰的高音层边界层的入射冲击波与未受干扰的高音层边界层之间的相互作用。在足够高的冲击激烈角度下,边界层通过近壁撞击的近距离撞击而过渡到湍流,而无需任何自由流动流动的干扰。该过渡导致Stanton数量和皮肤摩擦系数的局部显着增加,高入射角以大约线性的方式增加了峰值热机械载荷。提供了每种情况下相互作用下游边界层的统计分析,以量化雷诺类比喻因素的流向空间变化,并表明在壁附近的莫科文假说的崩溃,速度和温度在其中相关。观察到具有固定湍流prandtl数字的改良的强雷诺类比,表现最好。传统的转换失败,无法折叠不可压缩的日志定律的平均速度曲线。 WMLE会提示过渡和峰加热,延迟分离和进步,从而缩短了分离气泡。当冲击导致过渡时,WMLES提供了DNS峰值热机械载荷在$ \ pm 10 \%$内的预测,计算成本低于DNS,其数量级低于DNS。在相互作用的下游,在湍流边界层中,WMES与雷诺类比的DNS结果非常吻合,速度和温度的平均谱,包括温度峰以及温度/速度相关性。
The interaction between an incident shock wave and a Mach-6 undisturbed hypersonic laminar boundary layer over a cold wall is addressed using direct numerical simulations (DNS) and wall-modeled large-eddy simulations (WMLES) at different angles of incidence. At sufficiently high shock-incidence angles, the boundary layer transitions to turbulence via breakdown of near-wall streaks shortly downstream of the shock impingement, without the need of any inflow free-stream disturbances. The transition causes a localized significant increase in the Stanton number and skin-friction coefficient, with high incidence angles augmenting the peak thermomechanical loads in an approximately linear way. Statistical analyses of the boundary layer downstream of the interaction for each case are provided that quantify streamwise spatial variations of the Reynolds analogy factors and indicate a breakdown of the Morkovin's hypothesis near the wall, where velocity and temperature become correlated. A modified strong Reynolds analogy with a fixed turbulent Prandtl number is observed to perform best. Conventional transformations fail at collapsing the mean velocity profiles on the incompressible log law. The WMLES prompts transition and peak heating, delays separation, and advances reattachment, thereby shortening the separation bubble. When the shock leads to transition, WMLES provides predictions of DNS peak thermomechanical loads within $\pm 10\%$ at a computational cost lower than DNS by two orders of magnitude. Downstream of the interaction, in the turbulent boundary layer, WMLES agrees well with DNS results for the Reynolds analogy factor, the mean profiles of velocity and temperature, including the temperature peak, and the temperature/velocity correlation.