论文标题

ULIXES:对抗机器学习的面部识别隐私

Ulixes: Facial Recognition Privacy with Adversarial Machine Learning

论文作者

Cilloni, Thomas, Wang, Wei, Walter, Charles, Fleming, Charles

论文摘要

面部识别工具在从图像中识别人方面变得非常准确。但是,这是符合图片管理(例如社交媒体平台)的在线服务用户的隐私为代价。特别令人不安的是,即使用户没有标记其图像,也能够利用无监督的学习来识别面孔。在本文中,我们提出了Ulixes,这是一种生成视觉上非侵入性面部噪声掩模的策略,以产生对抗性示例,从而阻止在面部编码器的嵌入空间中形成可识别的用户群集。即使用户被揭露并在线提供标记的图像,这也适用。我们通过证明各种分类和聚类方法无法可靠地标记我们生成的对抗性示例来证明ULIXES的有效性。我们还研究了在各种黑盒子设置中ulixes的影响,并将其与对抗机器学习中最新的现状进行比较。最后,我们挑战了ULIXES针对受对抗训练的模型的有效性,并表明它对对策是可靠的。

Facial recognition tools are becoming exceptionally accurate in identifying people from images. However, this comes at the cost of privacy for users of online services with photo management (e.g. social media platforms). Particularly troubling is the ability to leverage unsupervised learning to recognize faces even when the user has not labeled their images. In this paper we propose Ulixes, a strategy to generate visually non-invasive facial noise masks that yield adversarial examples, preventing the formation of identifiable user clusters in the embedding space of facial encoders. This is applicable even when a user is unmasked and labeled images are available online. We demonstrate the effectiveness of Ulixes by showing that various classification and clustering methods cannot reliably label the adversarial examples we generate. We also study the effects of Ulixes in various black-box settings and compare it to the current state of the art in adversarial machine learning. Finally, we challenge the effectiveness of Ulixes against adversarially trained models and show that it is robust to countermeasures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源