论文标题
动脉依从性的分数建模:动脉刚度的替代替代度量
Fractional-order Modeling of the Arterial Compliance: An Alternative Surrogate Measure of the Arterial Stiffness
论文作者
论文摘要
最近的研究表明,分数计算工具在探测胶原组织的粘弹性特性,表征动脉血流和红细胞膜力学以及对主动脉瓣膜建模。在本文中,我们介绍了使用分数阶电容器(foc)的新型总参数等效电路模型。将电容器和电阻概括的焦点显示出一种分数行为,该行为可以通过幂律公式捕获弹性和粘性特性。提出的框架使用线性分数微分方程描述了血压输入和血容量之间的动态关系。结果表明,所提出的模型通过超过4,000名受试者的智能数据表现出合理的拟合性能。另外,在分数阶参数估计与中央血液动力学决定因素以及脉冲波速度指数之间已经确定了强相关性。因此,基于分数的动脉依从性范式在分析动脉刚度的替代工具中表现出突出的潜力。
Recent studies have demonstrated the advantages of fractional-order calculus tools for probing the viscoelastic properties of collagenous tissue, characterizing the arterial blood flow and red cell membrane mechanics, and modeling the aortic valve cusp. In this article, we present a novel lumped-parameter equivalent circuit models of the apparent arterial compliance using a fractional-order capacitor (FOC). FOC, which generalizes capacitors and resistors, displays a fractional-order behavior that can capture both elastic and viscous properties through a power-law formulation. The proposed framework describes the dynamic relationship between the blood pressure input and blood volume, using linear fractional-order differential equations. The results show that the proposed models present reasonable fit performance with in-silico data of more than 4,000 subjects. Additionally, strong correlations have been identified between the fractional-order parameter estimates and the central hemodynamic determinants as well as pulse wave velocity indexes. Therefore, fractional-order based paradigm of arterial compliance shows prominent potential as an alternative tool in the analysis of arterial stiffness.