论文标题

实时局部逼真的视频风格转移

Real-time Localized Photorealistic Video Style Transfer

论文作者

Xia, Xide, Xue, Tianfan, Lai, Wei-sheng, Sun, Zheng, Chang, Abby, Kulis, Brian, Chen, Jiawen

论文摘要

我们提出了一种新颖的算法,用于将图像的语义上有意义的本地区域的艺术风格转移到目标视频的本地区域,同时保留其光真实主义。可以通过使用视频分割算法或从诸如涂鸦之类的休闲用户指导中从图像中完全自动选择本地区域。我们的方法基于深度神经网络体系结构,灵感来自于最新的影子风格转移工作,是实时的,并且在没有运行时优化的任意输入方面起作用,一旦对各种艺术风格的数据集进行了培训。通过使用嘈杂的语义标签增强视频数据集并在样式,内容,面具和时间损失上共同优化,我们的方法可以应对输入中的各种缺陷,并在没有视觉文物的情况下制作时间连贯的视频。我们在各种样式图像和目标视频上演示了我们的方法,包括能够同时将不同样式传输到多个对象,并在及时之间平稳过渡。

We present a novel algorithm for transferring artistic styles of semantically meaningful local regions of an image onto local regions of a target video while preserving its photorealism. Local regions may be selected either fully automatically from an image, through using video segmentation algorithms, or from casual user guidance such as scribbles. Our method, based on a deep neural network architecture inspired by recent work in photorealistic style transfer, is real-time and works on arbitrary inputs without runtime optimization once trained on a diverse dataset of artistic styles. By augmenting our video dataset with noisy semantic labels and jointly optimizing over style, content, mask, and temporal losses, our method can cope with a variety of imperfections in the input and produce temporally coherent videos without visual artifacts. We demonstrate our method on a variety of style images and target videos, including the ability to transfer different styles onto multiple objects simultaneously, and smoothly transition between styles in time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源