论文标题
强大的神经网络受到强稳定性保留runge-kutta方法的启发
Robust Neural Networks inspired by Strong Stability Preserving Runge-Kutta methods
论文作者
论文摘要
深度神经网络已在各种领域取得了最先进的表现。最近的作品观察到,一类广泛使用的神经网络可以看作是数值离散化的欧拉方法。从数值离散的角度来看,强大的稳定性保留(SSP)方法比产生准确和稳定溶液的显式Euler方法更高级技术。由SSP属性和广义runge-kutta方法激励,我们提出了强大的稳定性保护网络(SSP网络),以提高针对对抗性攻击的鲁棒性。我们从经验上证明,提出的网络在没有任何防御方法的情况下提高了针对对抗性例子的鲁棒性。此外,SSP网络与最先进的对抗训练计划互补。最后,我们的实验表明,SSP网络抑制了对抗扰动的爆炸。我们的结果开辟了一种研究神经网络的稳健体系结构的方法,从数字离散文献中利用丰富的知识。
Deep neural networks have achieved state-of-the-art performance in a variety of fields. Recent works observe that a class of widely used neural networks can be viewed as the Euler method of numerical discretization. From the numerical discretization perspective, Strong Stability Preserving (SSP) methods are more advanced techniques than the explicit Euler method that produce both accurate and stable solutions. Motivated by the SSP property and a generalized Runge-Kutta method, we propose Strong Stability Preserving networks (SSP networks) which improve robustness against adversarial attacks. We empirically demonstrate that the proposed networks improve the robustness against adversarial examples without any defensive methods. Further, the SSP networks are complementary with a state-of-the-art adversarial training scheme. Lastly, our experiments show that SSP networks suppress the blow-up of adversarial perturbations. Our results open up a way to study robust architectures of neural networks leveraging rich knowledge from numerical discretization literature.