论文标题
小磁铁的热统计
Thermal statistics of small magnets
论文作者
论文摘要
尽管规范合奏在捕获宏观系统的热统计方面取得了巨大的成功,但小型系统表现出的规范行为的偏差尚不清楚。在这里,使用嵌入在较大的Ising磁铁热浴中的小二维ISING磁铁,我们在描述小型系统时表征了规范集合的故障。我们发现,对于二维ISING模型的临界点附近和下方的小型系统的规范行为有很大的偏差。值得注意的是,与规范合奏的协议不是由系统大小而是由系统及其周围环境之间的统计解耦驱动的。一个超级巨星的框架,在其中我们允许小磁铁的温度变化可以比吉布斯 - 波尔兹曼分布更高的精度捕获其热统计。我们讨论未来的方向。
While the canonical ensemble has been tremendously successful in capturing thermal statistics of macroscopic systems, deviations from canonical behavior exhibited by small systems are not well understood. Here, using a small two dimensional Ising magnet embedded inside a larger Ising magnet heat bath, we characterize the failures of the canonical ensemble when describing small systems. We find significant deviations from the canonical behavior for small systems near and below the critical point of the two dimensional Ising model. Notably, the agreement with the canonical ensemble is driven not by the system size but by the statistical decoupling between the system and its surrounding. A superstatistical framework wherein we allow the temperature of the small magnet to vary is able to capture its thermal statistics with significantly higher accuracy than the Gibbs-Boltzmann distribution. We discuss future directions.