论文标题
全向图像的失真感知单眼深度估计
Distortion-aware Monocular Depth Estimation for Omnidirectional Images
论文作者
论文摘要
全景任务的主要挑战在于图像之间对象的变形。在这项工作中,我们提出了一个失真感知的单眼全向(Damo)密集的深度估计网络,以解决对室内全景的这一挑战。首先,我们引入了一个失真感知的模块,以从全向图像中提取校准的语义特征。具体而言,我们利用可变形的卷积将其采样网格调整为全景上扭曲的物体的几何变化,然后利用带状池模块来针对由逆性格nomonic投影引入的水平变形采样。其次,我们进一步引入了一个插件球形感知的重量矩阵,以便我们的目标函数处理从球体预测的区域的不均匀分布。 360D数据集的实验表明,所提出的方法可以有效地从扭曲的全景中提取语义特征,并减轻扭曲引起的监督偏见。它以高效率在360D数据集上实现了最先进的性能。
A main challenge for tasks on panorama lies in the distortion of objects among images. In this work, we propose a Distortion-Aware Monocular Omnidirectional (DAMO) dense depth estimation network to address this challenge on indoor panoramas with two steps. First, we introduce a distortion-aware module to extract calibrated semantic features from omnidirectional images. Specifically, we exploit deformable convolution to adjust its sampling grids to geometric variations of distorted objects on panoramas and then utilize a strip pooling module to sample against horizontal distortion introduced by inverse gnomonic projection. Second, we further introduce a plug-and-play spherical-aware weight matrix for our objective function to handle the uneven distribution of areas projected from a sphere. Experiments on the 360D dataset show that the proposed method can effectively extract semantic features from distorted panoramas and alleviate the supervision bias caused by distortion. It achieves state-of-the-art performance on the 360D dataset with high efficiency.