论文标题
不完整的合作游戏中的积极性和凸性
Positivity and convexity in incomplete cooperative games
论文作者
论文摘要
不完整的合作游戏通过省略某些联盟的价值来推广合作游戏的经典模型。这允许将不确定性纳入模型并研究基础游戏以及仅基于部分信息的可能的回报分布。在本文中,我们对不完整的游戏进行了系统的研究,重点介绍了两个重要的合作游戏类别:正面游戏和凸面游戏。 关于积极性,我们将特殊类别的最小不完整游戏的先前结果推广到一般环境。我们通过存在证书来表征对积极游戏的不可扩展性,并使用其极端游戏来描述积极的扩展。然后将结果用于获得具有特殊结构的几类不完整游戏的明确公式。 第二部分涉及凸度。我们首先考虑了非阴性最小的不完整游戏的情况。然后,我们在相关的集合功能理论中调查现有结果,即为完成部分功能的问题提供背景。我们提供可扩展性的表征以及对称凸扩展集的完整描述。该集合用作凸扩展集的近似值。 最后,我们概述了关于不完整的合作游戏和合作间隔游戏之间联系的全新观点。
Incomplete cooperative games generalise the classical model of cooperative games by omitting the values of some of the coalitions. This allows to incorporate uncertainty into the model and study the underlying games as well as possible payoff distribution based only on the partial information. In this paper we perform a systematic study of incomplete games, focusing on two important classes of cooperative games: positive and convex games. Regarding positivity, we generalise previous results for a special class of minimal incomplete games to general setting. We characterise non-extendability to a positive game by the existence of a certificate and provide a description of the set of positive extensions using its extreme games. The results are then used to obtain explicit formulas for several classes of incomplete games with special structures. The second part deals with convexity. We begin with considering the case of non-negative minimal incomplete games. Then we survey existing results in the related theory of set functions, namely providing context to the problem of completing partial functions. We provide a characterisation of extendability and a full description of the set of symmetric convex extensions. The set serves as an approximation of the set of convex extensions. Finally, we outline an entirely new perspective on a connection between incomplete cooperative games and cooperative interval games.