论文标题

反思性解码:超越单向语言模型的单向生成

Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models

论文作者

West, Peter, Lu, Ximing, Holtzman, Ari, Bhagavatula, Chandra, Hwang, Jena, Choi, Yejin

论文摘要

公共可用的大型语言模型(LMS)生成具有出色质量的文本,但仅从左到右依次。结果,它们不立即适用于打破单向假设的生成任务,例如释义或注入文本,需要特定于任务的监督。 在本文中,我们提出了反射解码,这是一种新型的无监督算法,允许将单向LMS直接应用于非序列任务。我们的2步方法不需要监督甚至平行的语料库,只有两个概述的LMS朝相反的方向进行:前进和向后。首先,在上下文化步骤中,我们使用LMS生成过去和将来的上下文的合奏,这些集体共同捕获输入(例如,释义的源句子)。其次,在反射步骤中,我们在这些“上下文集合”上进行条件,生成与它们兼容的输出。全面的经验结果表明,反思性解码在释义和绑架文本填充方面的强大无监督基线的表现大大缩小了无监督和监督方法之间的差距。反射解码超过了包括人类评估在内的各种指标的多个监督基线。

Publicly available, large pretrained LanguageModels (LMs) generate text with remarkable quality, but only sequentially from left to right. As a result, they are not immediately applicable to generation tasks that break the unidirectional assumption, such as paraphrasing or text-infilling, necessitating task-specific supervision. In this paper, we present Reflective Decoding, a novel unsupervised algorithm that allows for direct application of unidirectional LMs to non-sequential tasks. Our 2-step approach requires no supervision or even parallel corpora, only two off-the-shelf pretrained LMs in opposite directions: forward and backward. First, in the contextualization step, we use LMs to generate ensembles of past and future contexts which collectively capture the input (e.g. the source sentence for paraphrasing). Second, in the reflection step, we condition on these "context ensembles", generating outputs that are compatible with them. Comprehensive empirical results demonstrate that Reflective Decoding outperforms strong unsupervised baselines on both paraphrasing and abductive text infilling, significantly narrowing the gap between unsupervised and supervised methods. Reflective Decoding surpasses multiple supervised baselines on various metrics including human evaluation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源