论文标题

多元包装模型的强大估计

Robust Estimation for Multivariate Wrapped Models

论文作者

Saraceno, Giovanni, Agostinelli, Claudio, Greco, Luca

论文摘要

提出了一种加权可能性技术,用于稳健地估算散布在p维圆环上的数据点的多元包裹正态分布。手头样本中离群值的发生可能严重损害了标准技术(例如最大似然法)的推断。因此,有必要通过强大的技术来处理拟合过程中这种模型不足,并有效地对观察值进行了有效的下降,而不是遵循假定的模型。此外,使用强大的方法可以帮助您在数据中隐藏和意外的子结构的情况下。在这里,建议基于Pearson残差建立一组数据依赖性权重,并解决相应的加权估计方程。特别是,通过使用分类EM算法来进行鲁棒估计,该分类EM算法通过基于当前参数的值计算权重来增强M-step。该方法的有限样本行为已通过蒙特卡洛数值研究和实际数据示例研究了。

A weighted likelihood technique for robust estimation of a multivariate Wrapped Normal distribution for data points scattered on a p-dimensional torus is proposed. The occurrence of outliers in the sample at hand can badly compromise inference for standard techniques such as maximum likelihood method. Therefore, there is the need to handle such model inadequacies in the fitting process by a robust technique and an effective down-weighting of observations not following the assumed model. Furthermore, the employ of a robust method could help in situations of hidden and unexpected substructures in the data. Here, it is suggested to build a set of data-dependent weights based on the Pearson residuals and solve the corresponding weighted likelihood estimating equations. In particular, robust estimation is carried out by using a Classification EM algorithm whose M-step is enhanced by the computation of weights based on current parameters' values. The finite sample behavior of the proposed method has been investigated by a Monte Carlo numerical studies and real data examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源