论文标题

椭圆模块图之间的关系

Relations between elliptic modular graphs

论文作者

Basu, Anirban

论文摘要

我们考虑某些椭圆形的模块化图函数,这些函数在属属属的非分离节点周围出现的两个弦弦不变术在$ d^8 r^4 $相互作用的相互作用中出现在类型II类型超构理论中的四个重力振幅的低动量扩张中。这些椭圆形的模块图具有由绿色功能给出的链接,以及其全态和抗塑形衍生物。在分析的各个中间阶段,使用适当的辅助图,我们表明,每个图只能用图形表示,其链接仅由绿色函数而不是其衍生物给出。这会减少椭圆形模块图空间中的基本元素数量。

We consider certain elliptic modular graph functions that arise in the asymptotic expansion around the non--separating node of genus two string invariants that appear in the integrand of the $D^8 R^4$ interaction in the low momentum expansion of the four graviton amplitude in type II superstring theory. These elliptic modular graphs have links given by the Green function, as well its holomorphic and anti--holomorphic derivatives. Using appropriate auxiliary graphs at various intermediate stages of the analysis, we show that each graph can be expressed solely in terms of graphs with links given only by the Green function and not its derivatives. This results in a reduction in the number of basis elements in the space of elliptic modular graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源