论文标题
使用事件摄像头实时面部和眼睛跟踪和眨眼检测
Real-Time Face & Eye Tracking and Blink Detection using Event Cameras
论文作者
论文摘要
事件摄像机包含出现的神经形态视觉传感器,可在每个像素上捕获局部光强度变化,从而产生异步事件的流。这种获取视觉信息的方式构成了与传统基于框架的相机的背离,并提供了一些重要的优势:低能消耗,高时间分辨率,高动态范围和低潜伏期。驾驶员监测系统(DMS)是旨在感知和了解驱动因素的物理和认知状态的卡宾安全系统。事件摄像机由于其固有的优势而特别适合DMS。本文提出了一种新颖的方法,可以同时检测和跟踪面部和眼睛进行驾驶员监测。提出了独特的,完全卷积的复发性神经网络体系结构。为了训练该网络,基于合成事件的数据集使用准确的边界框注释模拟,称为Neuromormorphic Helen。此外,提出了一种检测和分析驱动器眼睛眨眼的方法,从而利用了事件摄像机的高时间分辨率。眨眼的行为为疲劳或嗜睡的驱动程序水平提供了更多的见解。我们证明眨眼具有独特的时间签名,可以通过事件摄像机更好地捕获。
Event cameras contain emerging, neuromorphic vision sensors that capture local light intensity changes at each pixel, generating a stream of asynchronous events. This way of acquiring visual information constitutes a departure from traditional frame based cameras and offers several significant advantages: low energy consumption, high temporal resolution, high dynamic range and low latency. Driver monitoring systems (DMS) are in-cabin safety systems designed to sense and understand a drivers physical and cognitive state. Event cameras are particularly suited to DMS due to their inherent advantages. This paper proposes a novel method to simultaneously detect and track faces and eyes for driver monitoring. A unique, fully convolutional recurrent neural network architecture is presented. To train this network, a synthetic event-based dataset is simulated with accurate bounding box annotations, called Neuromorphic HELEN. Additionally, a method to detect and analyse drivers eye blinks is proposed, exploiting the high temporal resolution of event cameras. Behaviour of blinking provides greater insights into a driver level of fatigue or drowsiness. We show that blinks have a unique temporal signature that can be better captured by event cameras.