论文标题
关于对的非KLT位点的连接性
On connectedness of non-klt loci of singularities of pairs
论文作者
论文摘要
我们研究对奇异性的非KLT座位。我们表明,鉴于一对$(x,b)$和一个带有连接纤维的投射形态$ x \ to z $,因此$ - (k_x+b)$是$ z $以上的nef,$ z $,$(x,b)$的非klt locus(x,b)$最多在$ x \ z $ x \ $ x \ $ x \ z $的每个Fiber附近,最多有两个连接的组件。这是由Hacon和Han猜想的。 在不同的方向上,我们回答了某些对非KLT基因座的连接性的标记总问题。这是由镜子对称性中的构造动机。
We study the non-klt locus of singularities of pairs. We show that given a pair $(X,B)$ and a projective morphism $X\to Z$ with connected fibres such that $-(K_X+B)$ is nef over $Z$, the non-klt locus of $(X,B)$ has at most two connected components near each fibre of $X\to Z$. This was conjectured by Hacon and Han. In a different direction we answer a question of Mark Gross on connectedness of the non-klt loci of certain pairs. This is motivated by constructions in Mirror Symmetry.