论文标题
$ \ mathbb {c} $ - 椭圆运算符和$ \ mathrm {w}^{1,1} $ - 线性增长功能的规律性
$\mathbb{C}$-elliptic operators and $\mathrm{W}^{1,1}$-regularity for linear growth functionals
论文作者
论文摘要
在本文中,我们证明了最小值的较高的sobolev规则性,用于在One的线性差分运算符上评估的凸积分功能。这旨在将已经现有和对称梯度的情况概括为$ \ mathbb {c} $的整个类别 - 其中的椭圆运算符,包括dimension $ n \ geq 3 $的无跟踪对称梯度。
In this paper we prove the higher Sobolev regularity of minimisers for convex integral functionals evaluated on linear differential operators of order one. This intends to generalise the already existing theory for the cases of full and symmetric gradients to the entire class of $\mathbb{C}$-elliptic operators therein including the trace-free symmetric gradient for dimension $n \geq 3$.