论文标题

加权伯格曼空间的插值序列在强pseudoconvex有限域上

Interpolating Sequences for Weighted Bergman Spaces on Strongly Pseudoconvex Bounded Domains

论文作者

Keshavarzi, Hamzeh

论文摘要

令$ 0 <p <\ infty $,$β> -1 $,而$ω$是一个强烈的pseudoconvex有限域,在$ \ mathbb {c}^n $中具有光滑边界。我们将研究加权伯格曼空间$ a^p_β(ω)$的插值问题。在这种情况下,$ 1 \ leq p <\ infty $和$β> \ max \ {n(2p-1)-1,n(2q-1)-1 \} $,其中$ q $是$ p $的共轭指数($ q = 1 $,对于$ p = 1 $) $ \ mathbb {c}^n $,以$ a^p_β(\ mathbb {b} _n)$进行插值,仅当它分开时。

Let $0<p<\infty$, $β>-1$, and $Ω$ be a strongly pseudoconvex bounded domain with a smooth boundary in $\mathbb{C}^n$. We will study the interpolation problem for weighted Bergman spaces $A^p_β(Ω)$. In the case, $1\leq p<\infty$, and $β> \max \{n(2p-1)-1, n(2q-1)-1\}$, where $q$ is the conjugate exponent of $p$ (let $q=1$, for $p=1$), we show that a sequence in $\mathbb{B}_n$, the unit ball in $\mathbb{C}^n$, is interpolating for $A^p_β(\mathbb{B}_n)$ if and only if it is separated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源