论文标题
降低的残留类别中Carmichael编号的算术进行了
Arithmetic progressions of Carmichael numbers in a reduced residue class
论文作者
论文摘要
修复副自然数$ a,q $。假设$ k $ tuple的猜想,我们表明,卡迈克尔数字的任意长期算术进程存在,每个编号都在减少的残留类别$ a $ mod $ q $中,并且是三个不同质量数字的产物。
Fix coprime natural numbers $a,q$. Assuming the Prime $k$-tuple Conjecture, we show that there exist arbitrarily long arithmetic progressions of Carmichael numbers, each of which lies in the reduced residue class $a$ mod $q$ and is a product of three distinct prime numbers.