论文标题

近场定位,具有可重新配置的智能表面作用为镜头

Near-field Localization with a Reconfigurable Intelligent Surface Acting as Lens

论文作者

Abu-Shaban, Zohair, Keykhosravi, Kamran, Keskin, Musa Furkan, Alexandropoulos, George C., Seco-Granados, Gonzalo, Wymeersch, Henk

论文摘要

利用波前曲率可实现有限的基础架构和硬件复杂性的本地化。随着可重新配置的智能表面(RISS)的引入,尤其是在RIS充当镜头接收器时,会出现新的机会。我们使用基于RIS的透镜与接收射频链附加的单个接收天线元件非常接近进行发射器的定位。我们执行Fisher信息分析,评估不同晶状体配置的影响,并提出了两阶段定位算法。我们的结果表明,当有先验位置信息可用时,位置波束成形可以提高性能,而当缺乏先验信息时,首选随机波束成形。我们在28 GHz的中等尺寸镜头的模拟结果表明,距镜头3米以内的分解表级别的精度可以达到。

Exploiting wavefront curvature enables localization with limited infrastructure and hardware complexity. With the introduction of reconfigurable intelligent surfaces (RISs), new opportunities arise, in particular when the RIS is functioning as a lens receiver. We investigate the localization of a transmitter using a RIS-based lens in close proximity to a single receive antenna element attached to reception radio frequency chain. We perform a Fisher information analysis, evaluate the impact of different lens configurations, and propose a two-stage localization algorithm. Our results indicate that positional beamforming can lead to better performance when a priori location information is available, while random beamforming is preferred when a priori information is lacking. Our simulation results for a moderate size lens operating at 28 GHz showcased that decimeter-level accuracy can be attained within 3 meters to the lens.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源