论文标题
翻转图中有限刚性集
Finite Rigid Sets in Flip Graphs
论文作者
论文摘要
我们表明,对于大多数对表面,存在第一个表面的翻转图的有限子图,以便将此有限子图的任何射层同态施加到第二个表面的翻转图中,都可以独特地扩展到两个翻转图之间的注射式同源性。结合Aramayona-Koberda-Parlier的结果,这意味着该有限集的任何这种射层同态都是由表面的嵌入引起的。我们还在附录中包括几个翻转图的图像。
We show that for most pairs of surfaces, there exists a finite subgraph of the flip graph of the first surface so that any injective homomorphism of this finite subgraph into the flip graph of the second surface can be extended uniquely to an injective homomorphism between the two flip graphs. Combined with a result of Aramayona-Koberda-Parlier, this implies that any such injective homomorphism of this finite set is induced by an embedding of the surfaces. We also include images of several flip graphs in an appendix.