论文标题

长度的概括有限的霍夫曼编码为层次内存设置编码

Generalizations of Length Limited Huffman Coding for Hierarchical Memory Settings

论文作者

Banchhor, Shashwat, Gajjala, Rishikesh, Sabharwal, Yogish, Sen, Sandeep

论文摘要

在本文中,我们研究了设计无前缀编码方案的问题,该方案具有最小平均代码长度,可以在解码成本模型下有效地解码,该模型捕获内存层次结构引起的成本函数。我们还研究了一个与Huffman编码(LLHC)问题长度密切相关的此问题的特殊情况。我们将其称为{\ em soft-ltength Limited Huffman编码}问题。在此版本中,与该字母的$ n $字符相关的罚款超过了指定的绑定$ d $($ \ \ leq n $),其中惩罚与编码长度超过$ d $的长度线性增加。问题的目的是在预先指定的绑定$ {\ cal p} $中找到具有最小平均代码长度和总罚款的无前缀编码。这概括了LLHC问题。我们提出了一种算法来解决此问题,该问题在时间$ o(nd)$中运行。我们研究了进一步的概括,在该概括中,惩罚函数和目标函数都可以是编码字长度的任意单调非降低函数。我们为此设置提供基于动态编程的精确编程和PTA算法。

In this paper, we study the problem of designing prefix-free encoding schemes having minimum average code length that can be decoded efficiently under a decode cost model that captures memory hierarchy induced cost functions. We also study a special case of this problem that is closely related to the length limited Huffman coding (LLHC) problem; we call this the {\em soft-length limited Huffman coding} problem. In this version, there is a penalty associated with each of the $n$ characters of the alphabet whose encodings exceed a specified bound $D$($\leq n$), where the penalty increases linearly with the length of the encoding beyond $D$. The goal of the problem is to find a prefix-free encoding having minimum average code length and total penalty within a pre-specified bound ${\cal P}$. This generalizes the LLHC problem. We present an algorithm to solve this problem that runs in time $O( nD )$. We study a further generalization in which the penalty function and the objective function can both be arbitrary monotonically non-decreasing functions of the codeword length. We provide dynamic programming based exact and PTAS algorithms for this setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源