论文标题

确定服用深度学习阿片类药物的患者的阿片类药物使用障碍的风险

Identifying Risk of Opioid Use Disorder for Patients Taking Opioid Medications with Deep Learning

论文作者

Dong, Xinyu, Deng, Jianyuan, Rashidian, Sina, Abell-Hart, Kayley, Hou, Wei, Rosenthal, Richard N, Saltz, Mary, Saltz, Joel, Wang, Fusheng

论文摘要

美国正在经历阿片类药物流行病,每年有超过1000万个阿片类药物虐待者年龄在12岁或以上。识别有阿片类药物使用障碍(OUD)高风险的患者可以帮助进行早期的临床干预措施,以降低OUD的风险。我们的目标是通过使用机器学习和深度学习方法分析电子健康记录来预测阿片类药物处方使用者中的OUD患者。这将有助于我们更好地了解OUD的诊断,从而提供有关阿片类药物流行的新见解。在2008年1月1日至2017年12月31日之间,从Cerner Health Facts数据库中提取了已开处方的药物处方的患者的电子健康记录。将使用长期记忆(LSTM)模型来预测未来的五次遭遇,与逻辑上的森林,森林森林,决策,neural neural Neural Neural neural neural healister,比较了未来的阿片类药物使用障碍风险。使用F-1评分,精度,召回和AUROC评估预测性能。我们的时间深度学习模型提供了有希望的预测结果,从而超过其他方法,F1得分为0.8023,AUCROC为0.9369。该模型可以将相关的药物和生命体征识别为预测的重要特征。基于LSTM的时间深度学习模型可有效地使用患者过去的电子健康记录史(具有最小的领域知识)来预测阿片类药物使用障碍。它有可能改善早期干预和预防的临床决策支持,以对抗阿片类药物流行。

The United States is experiencing an opioid epidemic, and there were more than 10 million opioid misusers aged 12 or older each year. Identifying patients at high risk of Opioid Use Disorder (OUD) can help to make early clinical interventions to reduce the risk of OUD. Our goal is to predict OUD patients among opioid prescription users through analyzing electronic health records with machine learning and deep learning methods. This will help us to better understand the diagnoses of OUD, providing new insights on opioid epidemic. Electronic health records of patients who have been prescribed with medications containing active opioid ingredients were extracted from Cerner Health Facts database between January 1, 2008 and December 31, 2017. Long Short-Term Memory (LSTM) models were applied to predict opioid use disorder risk in the future based on recent five encounters, and compared to Logistic Regression, Random Forest, Decision Tree and Dense Neural Network. Prediction performance was assessed using F-1 score, precision, recall, and AUROC. Our temporal deep learning model provided promising prediction results which outperformed other methods, with a F1 score of 0.8023 and AUCROC of 0.9369. The model can identify OUD related medications and vital signs as important features for the prediction. LSTM based temporal deep learning model is effective on predicting opioid use disorder using a patient past history of electronic health records, with minimal domain knowledge. It has potential to improve clinical decision support for early intervention and prevention to combat the opioid epidemic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源