论文标题

与双重口译员测试差异隐私

Testing Differential Privacy with Dual Interpreters

论文作者

Zhang, Hengchu, Roth, Edo, Haeberlen, Andreas, Pierce, Benjamin C., Roth, Aaron

论文摘要

在大规模上应用差异隐私需要方便的方法来检查使用敏感数据适当保留隐私的程序计算。我们在这里提出了一个完全自动化的框架{\ em Testing}差异隐私,从非正式的差异隐私证明中调整了一种众所周知的“点式”技术。我们的框架称为DPCHECK,不需要编程器注释,可以处理所有先前经过验证或测试的算法,并且是第一个完全自动化的框架,以区分Privtree的正确和错误实现,这是一种概率终止算法,该算法以前尚未被机械检查。 我们分析了DPCHECK错误地接受非私有程序的概率,并证明,从理论上讲,通过合适的测试大小选择,可以使错误接受的概率成倍小。 我们通过实现对差异隐私机械验证的所有基准算法的实现,以及其他一些基准的算法,以及其他几个及其不正确的变体,并显示DPCHECK接受正确的实现并拒绝错误的变体,从而证明了DPCheck的实用性。 我们还展示了如何将DPCheck部署到实际工作流程中,以测试2020年美国人口普查披露避免系统(DAS)的差异隐私。

Applying differential privacy at scale requires convenient ways to check that programs computing with sensitive data appropriately preserve privacy. We propose here a fully automated framework for {\em testing} differential privacy, adapting a well-known "pointwise" technique from informal proofs of differential privacy. Our framework, called DPCheck, requires no programmer annotations, handles all previously verified or tested algorithms, and is the first fully automated framework to distinguish correct and buggy implementations of PrivTree, a probabilistically terminating algorithm that has not previously been mechanically checked. We analyze the probability of DPCheck mistakenly accepting a non-private program and prove that, theoretically, the probability of false acceptance can be made exponentially small by suitable choice of test size. We demonstrate DPCheck's utility empirically by implementing all benchmark algorithms from prior work on mechanical verification of differential privacy, plus several others and their incorrect variants, and show DPCheck accepts the correct implementations and rejects the incorrect variants. We also demonstrate how DPCheck can be deployed in a practical workflow to test differentially privacy for the 2020 US Census Disclosure Avoidance System (DAS).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源