论文标题

RELU网络代表的目标功能的全局优化

Global Optimization of Objective Functions Represented by ReLU Networks

论文作者

Strong, Christopher A., Wu, Haoze, Zeljić, Aleksandar, Julian, Kyle D., Katz, Guy, Barrett, Clark, Kochenderfer, Mykel J.

论文摘要

神经网络可以学习复杂的非凸功能,并且在安全至关重要的环境中保证其正确的行为是具有挑战性的。存在许多方法可以在网络中找到故障(例如,对抗性示例),但是这些方法不能保证缺乏故障。验证算法解决了这一需求,并通过回答“是或否”问题来提供有关神经网络的正式保证。例如,他们可以回答某些范围内是否存在违规行为。但是,个人“是或否”问题无法回答诸如“这些范围内最大错误”之类的定性问题;这些答案在于优化领域。因此,我们提出了扩展现有验证者以执行优化并找到的策略:(i)给定输入区域中最极端的失败以及(ii)导致故障所需的最小输入扰动。使用分配验证器的二分线搜索的幼稚方法可导致对验证者的许多昂贵且重叠的调用。取而代之的是,我们提出了一种将优化过程紧密整合到验证过程中的方法,与幼稚的方法相比,实现了更好的运行时性能。我们将实施的方法评估为最先进的神经网络验证器Marabou的扩展,并将其性能与基于优化的验证者Mipverify进行比较。我们观察到我们对Marabou和Mipverify的扩展之间的互补表现。

Neural networks can learn complex, non-convex functions, and it is challenging to guarantee their correct behavior in safety-critical contexts. Many approaches exist to find failures in networks (e.g., adversarial examples), but these cannot guarantee the absence of failures. Verification algorithms address this need and provide formal guarantees about a neural network by answering "yes or no" questions. For example, they can answer whether a violation exists within certain bounds. However, individual "yes or no" questions cannot answer qualitative questions such as "what is the largest error within these bounds"; the answers to these lie in the domain of optimization. Therefore, we propose strategies to extend existing verifiers to perform optimization and find: (i) the most extreme failure in a given input region and (ii) the minimum input perturbation required to cause a failure. A naive approach using a bisection search with an off-the-shelf verifier results in many expensive and overlapping calls to the verifier. Instead, we propose an approach that tightly integrates the optimization process into the verification procedure, achieving better runtime performance than the naive approach. We evaluate our approach implemented as an extension of Marabou, a state-of-the-art neural network verifier, and compare its performance with the bisection approach and MIPVerify, an optimization-based verifier. We observe complementary performance between our extension of Marabou and MIPVerify.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源