论文标题
从广告$ _3 $ bethe方程式的长字符串和对称产品Orbifold
Long Strings and Symmetric Product Orbifold from the AdS$_3$ Bethe Equations
论文作者
论文摘要
广告/CFT二元性产生了一系列特别丰富的集成系统。在那里,可以从非偏好的分解的S矩阵来理解生活在弦世界上的二维量子场理论,并且能量谱可以通过诸如镜像热力学骨ANSATZ或量子光谱曲线等技术得出。对于没有Ramond-Ramond Fluxes的ADS $ _3 $/CFT $ _2 $,WorldHseet理论是一种具有连续和离散表示的Wess-Zumino-witten模型,对于最低允许的水平,对自由理论的对称产品是双重的。我将展示如何由可集成性产生连续表示,并且在最低水平下,伯特方程在鼻子上产生对称产品Orbifold分区函数。
A particularly rich class of integrable systems arises from the AdS/CFT duality. There, the two-dimensional quantum field theory living on the string worldsheet may be understood in terms of a non-relativistic factorized S matrix, and the energy spectrum may be derived by techniques such as the mirror thermodynamic Bethe ansatz or the quantum spectral curve. In the case of AdS$_3$/CFT$_2$ without Ramond-Ramond fluxes, the worldhseet theory is a Wess-Zumino-Witten model with continous and discrete representations which, for the lowest allowed level, is dual to the symmetric product orbifold of a free theory. I will show how continuous representations may arise from integrability, and that at lowest level the Bethe equations yield the symmetric product orbifold partition function on the nose.