论文标题
依赖密度的nn势来自转向型手性的三中性力:远程术语
Density-dependent nn-potential from subleading chiral three-neutron forces: Long-range terms
论文作者
论文摘要
指定三个中子的情况下,指定了三个中子的远程手性三个核子力的远程术语。从这些$ 3N $的互动中,在纯中子物质中,有效的密度依赖性中子潜在$ v_ \ text {med} $得出了。在将相关的3N-DARGAMS分为两杆交换之后,评估了两个中性线对中间环的所有自闭合和串联与中等环路的串联。动量和$ k_n $依赖的电位$ 1,\,\vecσ_1\!\!\ cdot \! \vecσ_1\!+\!\vecσ_2)\!\ cdot \! (\ vec q \! \vecσ_2\!\ cdot \!\ vec p \,')$和$ \vecσ_1\!\ cdot \! (\ vec q \!\ times \!\ vec p \,)\vecσ_2\!\ cdot \! (\ vec q \!\ times \!\ vec p \,)$以函数表示,要么以封闭的分析形式给出,要么最多需要一种数值集成。次出版的手性3N力量以相同的方式对待。 $ v_ \ text {med} $获得的结果有助于将远程手性的三体力实施到高级中子物质计算中。
The long-range terms of the subleading chiral three-nucleon force [published in Phys.\,Rev.\,C77, 064004 (2008)] are specified to the case of three neutrons. From these $3n$-interactions an effective density-dependent neutron-neutron potential $V_\text{med}$ in pure neutron matter is derived. Following the division of the pertinent 3n-diagrams into two-pion exchange, two-pion-one-pion exchange and ring topology, all self-closings and concatenations of two neutron-lines to an in-medium loop are evaluated. The momentum and $k_n$-dependent potentials associated with the spin-operators $1,\, \vecσ_1\!\cdot\!\vecσ_2,\, \vecσ_1\!\cdot\!\vec q\, \vecσ_2\!\cdot\!\vec q,\, i( \vecσ_1\!+\!\vecσ_2)\!\cdot \! (\vec q\!\times \! \vec p\,),\, (\vecσ_1\!\cdot\!\vec p\,\vecσ_2\!\cdot\!\vec p+\vecσ_1\!\cdot\!\vec p\,'\, \vecσ_2\!\cdot\!\vec p\,')$ and $ \vecσ_1\!\cdot \! (\vec q\!\times \! \vec p\,)\vecσ_2\!\cdot \! (\vec q\!\times \! \vec p\,)$ are expressed in terms of functions, which are either given in closed analytical form or require at most one numerical integration. The subsubleading chiral 3N-force is treated in the same way. The obtained results for $V_\text{med}$ are helpful to implement the long-range chiral three-body forces into advanced neutron matter calculations.