论文标题

QPALM:非convex二次程序的近端增强拉格朗日方法

QPALM: A Proximal Augmented Lagrangian Method for Nonconvex Quadratic Programs

论文作者

Hermans, Ben, Themelis, Andreas, Patrinos, Panagiotis

论文摘要

我们提出了基于近端增强拉格朗日方法的QPALM,这是一种非convex二次编程(QP)求解器。该方法求解了一系列内部子问题,这些序列可以强烈凸出,因此可以接受独特的解决方案。结果步骤显示出等同于扩展可估算的成本函数上不精确的近端迭代,该函数允许进行相当简单的分析,其中显示了以\(r \) - 线性速率在\(r \)的固定点上的收敛。 QPALM算法使用半齿牛顿方向和精确的线路搜索解决了子问题。在大多数迭代中,可以通过使用合适的分解更新例程来有效地计算出前者,而后者则需要单调,一维,分段仿射函数的零。 QPALM以开源C代码实现,其量身定制的线性代数例程用于自编写的软件包LADEL中的分解。在数值模拟中,结果表明,实现非常强大,解决了所有Maros-Meszaros问题,并在最可爱的测试集中为大多数NonConvex QPS找到一个固定点。此外,在典型的QP中,它与由应用域(例如投资组合优化和模型预测控制)产生的典型QP中的最新QP求解器具有竞争力。因此,QPALM在有效地解决容易问题和硬性问题之间取得了独特的平衡。

We propose QPALM, a nonconvex quadratic programming (QP) solver based on the proximal augmented Lagrangian method. This method solves a sequence of inner subproblems which can be enforced to be strongly convex and which therefore admit a unique solution. The resulting steps are shown to be equivalent to inexact proximal point iterations on the extended-real-valued cost function, which allows for a fairly simple analysis where convergence to a stationary point at an \(R\)-linear rate is shown. The QPALM algorithm solves the subproblems iteratively using semismooth Newton directions and an exact linesearch. The former can be computed efficiently in most iterations by making use of suitable factorization update routines, while the latter requires the zero of a monotone, one-dimensional, piecewise affine function. QPALM is implemented in open-source C code, with tailored linear algebra routines for the factorization in a self-written package LADEL. The resulting implementation is shown to be extremely robust in numerical simulations, solving all of the Maros-Meszaros problems and finding a stationary point for most of the nonconvex QPs in the Cutest test set. Furthermore, it is shown to be competitive against state-of-the-art convex QP solvers in typical QPs arising from application domains such as portfolio optimization and model predictive control. As such, QPALM strikes a unique balance between solving both easy and hard problems efficiently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源