论文标题

Jaket:知识图和语言理解的联合预培训

JAKET: Joint Pre-training of Knowledge Graph and Language Understanding

论文作者

Yu, Donghan, Zhu, Chenguang, Yang, Yiming, Zeng, Michael

论文摘要

知识图(kgs)包含有关世界知识,实体和关系的丰富信息。因此,它们可以成为现有预训练的语言模型的重要补充。但是,有效地将信息从kg纳入语言建模仍然是一个挑战。对知识图的理解需要相关的上下文。我们提出了一个新颖的联合培训框架Jaket,以模拟知识图和语言。知识模块和语言模块提供了相互协助的基本信息:知识模块在文本中为实体生成嵌入,而语言模块为图表中的实体和关系生成了上下文感知的初始嵌入。我们的设计使预训练的模型可以轻松适应新领域中看不见的知识图。几个知识感知的NLP任务的实验结果表明,我们提出的框架通过有效利用语言理解中的知识来实现​​卓越的表现。

Knowledge graphs (KGs) contain rich information about world knowledge, entities and relations. Thus, they can be great supplements to existing pre-trained language models. However, it remains a challenge to efficiently integrate information from KG into language modeling. And the understanding of a knowledge graph requires related context. We propose a novel joint pre-training framework, JAKET, to model both the knowledge graph and language. The knowledge module and language module provide essential information to mutually assist each other: the knowledge module produces embeddings for entities in text while the language module generates context-aware initial embeddings for entities and relations in the graph. Our design enables the pre-trained model to easily adapt to unseen knowledge graphs in new domains. Experimental results on several knowledge-aware NLP tasks show that our proposed framework achieves superior performance by effectively leveraging knowledge in language understanding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源