论文标题
$ \ textit {spitzer} $ 4.5 $μ$ m相曲线的全面重新分析以及超热木星睫毛膏1B和KELT-16B的相位变化
A Comprehensive Reanalysis of $\textit{Spitzer}$'s 4.5 $μ$m Phase Curves, and the Phase Variations of the Ultra-hot Jupiters MASCARA-1b and KELT-16b
论文作者
论文摘要
我们已经开发了一个开源管道,用于分析\ textIt {spitzer}/irac通道1和2个时间序列光度法,并结合了一些最流行的去相关方法。我们将此管道应用于超热木星睫毛膏-1b和Kelt-16b的新相曲线观测,我们对15个相曲线进行了首次全面的重新分析。我们发现Mascara-1b和Kelt-16b具有$ 6^{+11} _ { - 11}〜^{\ Circ} $ W和$ 38^{+16} _ { - 15}〜^{\ circ} $ w,dayide温度,$ 2952^^$ 29552^{$ 2952^{$ k = - 和97} _ {77} $ 3070^{+160} _ { - 150} $ k,$ 1300^{+340} _ { - 340} $ K和$ 1900^{+430} _ { - 440} $ k的夜间温度分别为$ 1300^{+340} _ { - 340} $ k。我们证实了几天和辐照温度之间的密切相关性,而夜间温度的依赖性较浅。我们还发现证据表明,归一化相曲线振幅(峰值到泥浆除以日食深度)与恒星有效温度相关。另外,尽管我们的不同模型通常会检索相似的参数,但它们之间有时会出现显着差异,以及我们的首选模型与文献值之间的差异。尽管如此,我们的首选模型与已发表的阶段偏移一致,至$ -8 \ pm21 $度($ -1.6 \ pm3.2 $ sigma),正常化的相曲线振幅平均复制到$ -0.01.01 \ pm0.24 $($ -0.1.1.1.1.1 \ pm1.6 $ 1.6 $ 1.6 $ 1.6 $ sigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigsigmma)。最后,我们发现幸福在大多数情况下表现最好,但不是全部。因此,我们建议将来的分析考虑众多检测器模型,以确保最佳拟合并评估模型依赖性。
We have developed an open-source pipeline for the analysis of \textit{Spitzer}/IRAC channel 1 and 2 time-series photometry, incorporating some of the most popular decorrelation methods. We applied this pipeline to new phase curve observations of ultra-hot Jupiters MASCARA-1b and KELT-16b, and we performed the first comprehensive reanalysis of 15 phase curves. We find that MASCARA-1b and KELT-16b have phase offsets of $6^{+11}_{-11}~^{\circ}$W and $38^{+16}_{-15}~^{\circ}$W, dayside temperatures of $2952^{+100}_{-97}$ K and $3070^{+160}_{-150}$ K, and nightside temperatures of $1300^{+340}_{-340}$ K and $1900^{+430}_{-440}$ K, respectively. We confirm a strong correlation between dayside and irradiation temperatures with a shallower dependency for nightside temperature. We also find evidence that the normalized phase curve amplitude (peak-to-trough divided by eclipse depth) is correlated with stellar effective temperature. In addition, while our different models often retrieve similar parameters, significant differences occasionally arise between them, as well as between our preferred model and the literature values. Nevertheless, our preferred models are consistent with published phase offsets to within $-8\pm21$ degrees ($-1.6\pm3.2$ sigma), and normalized phase curve amplitudes are on average reproduced to within $-0.01\pm0.24$ ($-0.1\pm1.6$ sigma). Finally, we find that BLISS performs best in most cases, but not all; we therefore recommend future analyses consider numerous detector models to ensure an optimal fit and to assess model dependencies.