论文标题
多元语义知觉图形神经网络
Multi-grained Semantics-aware Graph Neural Networks
论文作者
论文摘要
图形神经网络(GNN)是表示图表学习的强大技术,并且越来越多地部署在涉及节点和图形任务的多种不同应用程序中。大多数现有的研究都可以独立地解决节点任务或图形任务,而它们固有地关联。这项工作提出了一个统一的模型ADAMGNN,以相互优化的方式进行交互式学习节点和图形表示。与现有的GNN模型和图形合并方法相比,ADAMGNN用学习的多元语义增强了节点表示形式,并避免在合并过程中丢失节点特征和图形结构信息。具体而言,提出了一个可区分的合并操作员来自适应生成一个多透明的结构,该结构涉及图中的中级和宏观语义信息。我们还设计了ADAMGNN中的未解决操作员和反式聚合器,以更好地利用多元语义的语义来增强节点表示。更新的节点表示形式可以进一步调整下一个迭代中的图表表示。 14个现实世界图数据集的实验表明,在节点和图形任务上,ADAMGNN可以显着优于17个竞争模型。消融研究证实了Adamgnn成分的有效性,最后的经验分析进一步揭示了Adamgnn在捕获长期相互作用方面的巧妙能力。
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs and have been increasingly deployed in a multitude of different applications that involve node- and graph-wise tasks. Most existing studies solve either the node-wise task or the graph-wise task independently while they are inherently correlated. This work proposes a unified model, AdamGNN, to interactively learn node and graph representations in a mutual-optimisation manner. Compared with existing GNN models and graph pooling methods, AdamGNN enhances the node representation with the learned multi-grained semantics and avoids losing node features and graph structure information during pooling. Specifically, a differentiable pooling operator is proposed to adaptively generate a multi-grained structure that involves meso- and macro-level semantic information in the graph. We also devise the unpooling operator and the flyback aggregator in AdamGNN to better leverage the multi-grained semantics to enhance node representations. The updated node representations can further adjust the graph representation in the next iteration. Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks. The ablation studies confirm the effectiveness of AdamGNN's components, and the last empirical analysis further reveals the ingenious ability of AdamGNN in capturing long-range interactions.