论文标题
矩阵产品状态递归方法,用于密切相关的量子系统
Matrix product state recursion methods for strongly correlated quantum systems
论文作者
论文摘要
我们提出了一种推断实时动态相关函数的方法,该方法可以提高矩阵乘积状态方法计算光谱函数的能力。与广泛使用的线性预测方法不同,它忽略了要推断的数据的来源,我们的递归方法利用了在早期的同一波函数及其翻译的时间来使用波函数的表示。这种递归方法对于非交互式费米系统是精确的。出乎意料的是,在大相互作用强度下,递归方法也比线性预测更强大。我们在Hubbard两腿梯子上测试了此方法,并比以前的研究更准确地为光谱函数提供了结果。
We present a method for extrapolation of real-time dynamical correlation functions which can improve the capability of matrix product state methods to compute spectral functions. Unlike the widely used linear prediction method, which ignores the origin of the data being extrapolated, our recursion methods utilize a representation of the wavefunction in terms of an expansion of the same wavefunction and its translations at earlier times. This recursion method is exact for a noninteracting Fermi system. Surprisingly, the recursion method is also more robust than linear prediction at large interaction strength. We test this method on the Hubbard two-leg ladder and present more accurate results for the spectral function than previous studies.