论文标题

引文推荐的双重注意模型

Dual Attention Model for Citation Recommendation

论文作者

Zhang, Yang, Ma, Qiang

论文摘要

基于成倍增加的学术文章,发现和引用全面和适当的资源已成为一项非平凡的任务。常规引用推荐方法遭受严重信息损失。例如,他们不考虑用户正在编写的论文部分,以及他们需要找到引用,在本地上下文中的单词(描述引用的文本跨度)之间的相关性,或者从本地上下文中对每个单词的重要性。这些缺点使这种方法不足以推荐足够的学术手稿引用。在这项研究中,我们提出了一个新型的基于嵌入的神经网络,称为“引文推荐双重注意模型(DACR)”,以在手稿准备过程中推荐引用。我们的方法调整了语义信息的三个维度的嵌入:本地上下文中的单词,结构上下文以及用户工作的部分。神经网络旨在最大程度地提高三个输入(本地上下文单词,部分和结构上下文)的嵌入与出现在上下文中的目标引用之间的相似性。神经网络的核心是由自我注意力和加性关注组成,前者旨在捕捉上下文单词和结构上下文之间的相关性,而后者旨在了解它们的重要性。现实世界数据集的实验证明了所提出的方法的有效性。

Based on an exponentially increasing number of academic articles, discovering and citing comprehensive and appropriate resources has become a non-trivial task. Conventional citation recommender methods suffer from severe information loss. For example, they do not consider the section of the paper that the user is writing and for which they need to find a citation, the relatedness between the words in the local context (the text span that describes a citation), or the importance on each word from the local context. These shortcomings make such methods insufficient for recommending adequate citations to academic manuscripts. In this study, we propose a novel embedding-based neural network called "dual attention model for citation recommendation (DACR)" to recommend citations during manuscript preparation. Our method adapts embedding of three dimensions of semantic information: words in the local context, structural contexts, and the section on which a user is working. A neural network is designed to maximize the similarity between the embedding of the three input (local context words, section and structural contexts) and the target citation appearing in the context. The core of the neural network is composed of self-attention and additive attention, where the former aims to capture the relatedness between the contextual words and structural context, and the latter aims to learn the importance of them. The experiments on real-world datasets demonstrate the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源