论文标题

平面域上的谐波映射的单价和准文献扩展的标准

Criteria for univalence and quasiconformal extension for harmonic mappings on planar domains

论文作者

Efraimidis, Iason

论文摘要

如果$ω$是$ \ operline {\ mathbb c} $中的简单连接的域,则根据Ahlfors-Gehring定理,$ω$是准确的,并且仅当存在足够的情况下,当时存在足够的条件,可以使holomorphic函数在$ω$中的生长中与其Schwarzian derivitivativitivativitivativitivativatived of to $ω$之间的关系。我们通过证明对准风险的单价标准将该定理扩展到谐波映射。我们还表明,满足该标准的映射承认同构扩展为$ \ operline {\ mathbb c} $,并且在$ω$中的准真实性的附加假设下,他们承认quasiconformalformal formenformal formenformal {\ + edline {\ mathbb c} $。 Osgood,Beardon和Gehring已将Ahlfors-Gehring定理扩展到有限连接的域$ω$,他们表明,当$ \partialΩ$的组件是点或quasicircles的分量时,Schwarzian的Univalentions in $ω$ in $ω$。我们将此定理推广到谐波映射。

If $Ω$ is a simply connected domain in $\overline{\mathbb C}$ then, according to the Ahlfors-Gehring theorem, $Ω$ is a quasidisk if and only if there exists a sufficient condition for the univalence of holomorphic functions in $Ω$ in relation to the growth of their Schwarzian derivative. We extend this theorem to harmonic mappings by proving a univalence criterion on quasidisks. We also show that the mappings satisfying this criterion admit a homeomorphic extension to $\overline{\mathbb C}$ and, under the additional assumption of quasiconformality in $Ω$, they admit a quasiconformal extension to $\overline{\mathbb C}$. The Ahlfors-Gehring theorem has been extended to finitely connected domains $Ω$ by Osgood, Beardon and Gehring, who showed that a Schwarzian criterion for univalence holds in $Ω$ if and only if the components of $\partialΩ$ are either points or quasicircles. We generalize this theorem to harmonic mappings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源