论文标题

RCM:自动要求形式化的要求捕获模型

RCM: Requirement Capturing Model for Automated Requirements Formalisation

论文作者

Zaki-Ismail, Aya, Osama, Mohamed, Abdelrazek, Mohamed, Grundy, John, Ibrahim, Amani

论文摘要

大多数现有的自动化要求形式化技术要求系统工程师(重新)使用一组具有固定结构和已知语义的预定义要求模板来编写要求,以简化形式化过程。但是,这些技术需要理解和记忆要求模板,这些模板通常是固定格式,限制了要求捕获的要求,并且不允许捕获更多样化的要求。为了解决这些限制,我们需要一个参考模型,该模型无论其结构,格式或订单如何,都可以捕获关键要求细节。然后,使用NLP技术,我们可以将文本要求转换为参考模型。最后,使用一套转换规则,我们可以将这些要求转换为正式符号。在本文中,我们介绍了此过程中的第一个和关键步骤,无论是参考模型,要求捕获模型(RCM),以对系统需求的关键元素进行建模,无论其格式或顺序如何。我们评估了RCM模型的鲁棒性,而现有的需求表示方法和162个要求的基准。我们的评估表明,与现有方法相比,RCM分解支持更广泛的需求格式。我们还实施了一套转换规则,该规则将基于RCM的要求转换为时间逻辑。将来,我们将开发基于NLP的RCM提取技术来提供端到端解决方案。

Most existing automated requirements formalisation techniques require system engineers to (re)write their requirements using a set of predefined requirement templates with a fixed structure and known semantics to simplify the formalisation process. However, these techniques require understanding and memorising requirement templates, which are usually fixed format, limit requirements captured, and do not allow capture of more diverse requirements. To address these limitations, we need a reference model that captures key requirement details regardless of their structure, format or order. Then, using NLP techniques we can transform textual requirements into the reference model. Finally, using a suite of transformation rules we can then convert these requirements into formal notations. In this paper, we introduce the first and key step in this process, a Requirement Capturing Model (RCM) - as a reference model - to model the key elements of a system requirement regardless of their format, or order. We evaluated the robustness of the RCM model compared to 15 existing requirements representation approaches and a benchmark of 162 requirements. Our evaluation shows that RCM breakdowns support a wider range of requirements formats compared to the existing approaches. We also implemented a suite of transformation rules that transforms RCM-based requirements into temporal logic(s). In the future, we will develop NLP-based RCM extraction technique to provide end-to-end solution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源