论文标题
希格斯束模量空间的准标记的分析方法
An Analytic Approach to the Quasi-projectivity of the Moduli Space of Higgs Bundles
论文作者
论文摘要
希格斯束的模量空间可以定义为无限维空间的商。此外,通过Kuranishi切片方法,它配备了正常复杂空间的结构。在本文中,我们将使用分析方法证明模量空间是准主体。实际上,按照豪瑟(Hausel)的方法,我们将使用符号切割来构建模量空间的正常和投射压缩,因此证明了准标记。本文和豪瑟尔的主要区别在于,不假定模量空间的平滑度。
The moduli space of Higgs bundles can be defined as a quotient of an infinite-dimensional space. Moreover, by the Kuranishi slice method, it is equipped with the structure of a normal complex space. In this paper, we will use analytic methods to show that the moduli space is quasi-projective. In fact, following Hausel's method, we will use the symplectic cut to construct a normal and projective compactification of the moduli space, and hence prove the quasi-projectivity. The main difference between this paper and Hausel's is that the smoothness of the moduli space is not assumed.