论文标题
充电器调度优化问题的一般框架
A General Framework for Charger Scheduling Optimization Problems
论文作者
论文摘要
本文提出了一个通用框架,以解决各种NP-HARD充电器调度问题,优化了移动充电器的轨迹,以延长无线可充电传感器网络(WRSN)的寿命,该系统由具有可充电电池和移动充电器的传感器组成。现有的充电调度问题解决方案需要特定于问题的设计以及解决方案质量和计算时间之间的权衡。取而代之的是,我们观察到相同类型的充电器调度问题的实例通过相似的组合结构反复解决,但数据不同。我们考虑搜索最佳充电器调度作为试验和错误过程,以及充电优化问题作为奖励的目标函数,每次搜索的标量反馈信号。我们提出了一个基于强化的基于学习的充电器调度优化框架。该框架的最大优势是,可以自动从以前的经验中自动学习各种域特异性充电器调度策略。一个框架还简化了用于单个充电器调度优化问题的算法设计的复杂性。我们选择了三个代表性充电器计划优化问题,基于提议的深入强化学习框架设计算法,实施它们并将其与现有的算法进行比较。广泛的仿真结果表明,我们的算法基于提议的框架优于所有现有框架。
This paper presents a general framework to tackle a diverse range of NP-hard charger scheduling problems, optimizing the trajectory of mobile chargers to prolong the life of Wireless Rechargeable Sensor Network (WRSN), a system consisting of sensors with rechargeable batteries and mobile chargers. Existing solutions to charger scheduling problems require problem-specific design and a trade-off between the solution quality and computing time. Instead, we observe that instances of the same type of charger scheduling problem are solved repeatedly with similar combinatorial structure but different data. We consider searching an optimal charger scheduling as a trial and error process, and the objective function of a charging optimization problem as reward, a scalar feedback signal for each search. We propose a deep reinforcement learning-based charger scheduling optimization framework. The biggest advantage of the framework is that a diverse range of domain-specific charger scheduling strategy can be learned automatically from previous experiences. A framework also simplifies the complexity of algorithm design for individual charger scheduling optimization problem. We pick three representative charger scheduling optimization problems, design algorithms based on the proposed deep reinforcement learning framework, implement them, and compare them with existing ones. Extensive simulation results show that our algorithms based on the proposed framework outperform all existing ones.