论文标题
在Bieri-neumann-strebel-renz $σ^1 $ - 不可或缺的Artin群体
On the Bieri-Neumann-Strebel-Renz $Σ^1$-invariant of even Artin groups
论文作者
论文摘要
我们计算Bieri-neumann-strebel-renz不变性$σ^1(g)$,即使是Artin组$ G $,带有基础图$γ$,因此,如果在所有标签上都有$ 2的封闭路径,那么所有标签大于2,那么此路径的长度总是很奇怪。我们表明$σ^1(g)^c $是一个合理定义的球形多面体。
We calculate the Bieri-Neumann-Strebel-Renz invariant $Σ^1(G)$ for even Artin groups $G$ with underlying graph $Γ$ such that if there is a closed reduced path in $Γ$ with all labels bigger than 2 then the length of such path is always odd. We show that $Σ^1(G)^c$ is a rationally defined spherical polyhedron.