论文标题
高阶拓扑晶体响应,广义全局对称性和弹性四方的现场理论
Field theory of higher-order topological crystalline response, generalized global symmetries and elasticity tetrads
论文作者
论文摘要
我们讨论没有其他对称性的高阶拓扑场理论和拓扑结晶绝缘子的响应。我们展示了系统的拓扑和几何形状是如何根据弹性四元来组织的,这些弹性是晶格拓扑指控,更高形式的保护定律,对散装系统的副歧管的响应的基态程度。在结晶绝缘子中,它们以透明的方式对高阶全球对称性进行了分类。这与拓扑术语,多极扩展和异常流入的尺寸层次结构相吻合,与混合数量的弹性四元和电磁量规场有关。在弹性四局的连续限制中,半古典膨胀可用于在全球U(1)对称性的较高阶段或嵌入式拓扑响应中,例如具有明确的准磁性公式的高阶准公式,以使高阶准文化构图在弹性式弹性方面和绿色的功能。拓扑响应并很容易在参数空间中概括,例如多极泵。我们的简单结果进一步桥接了拓扑场理论,较高形式的对称性和量规场,分形激发和拓扑缺陷之间的连接,并在晶体绝缘子中具有限制的迁移率弹性弹性。
We discuss the higher-order topological field theory and response of topological crystalline insulators with no other symmetries. We show how the topology and geometry of the system is organised in terms of the elasticity tetrads which are ground state degrees of freedom labelling lattice topological charges, higher-form conservation laws and responses on sub-dimensional manifolds of the bulk system. In a crystalline insulator, they classify higher-order global symmetries in a transparent fashion. This coincides with the dimensional hierarchy of topological terms, the multipole expansion, and anomaly inflow, related to a mixed number of elasticity tetrads and electromagnetic gauge fields. In the continuum limit of the elasticity tetrads, the semi-classical expansion can be used to derive the higher-order or embedded topological responses to global U(1) symmetries, such as electromagnetic gauge fields with explicit formulas for the higher-order quasi-topological invariants in terms of the elasticity tetrads and Green's functions. The topological responses and readily generalized in parameter space to allow for e.g. multipole pumping. Our simple results further bridge the recently appreciated connections between topological field theory, higher form symmetries and gauge fields, fractonic excitations and topological defects with restricted mobility elasticity in crystalline insulators.