论文标题

几个变量的地图的奇异性和关于普遍同态的菌丝的问题

Singularity of maps of several variables and a problem of Mycielski concerning prevalent homeomorphisms

论文作者

Balka, Richárd, Elekes, Márton, Kiss, Viktor, Poór, Márk

论文摘要

S. Banach指出,$ \ text {HONEO}([0,1])$的通用图(从Bai​​re类别的意义上)的图表具有$ 2 $。 J. Mycielski询问该度量理论二元组是否成立,即,除了$ \ text {homeo}(homeo}([0,1])$的所有图表(在Christensen的意义上,所有除去)是否具有$ 2 $。我们肯定地回答了这个问题。 我们将$ f \在\ text {homeo}中称为([0,1]^d)$单数,如果它对零子设置进行了合适的完整度量,并且如果几乎到处都可以与单数衍生矩阵区分,那么如果它几乎到处都可以区分。由于$ f \ in \ text {HONEO}([0,1])$具有长度$ 2 $ iff $ f $是单数的Iff $ f $非常单数,因此以下结果是Banach观察到的较高维度类似物,我们对Mycielski的问题的解决方案。 我们表明,对于$ d \ ge 2 $,$ \ text {homeo}的通用元素的图表([0,1]^d)$具有无限的$ d $ d $ diblesional hausdorff措施,与Banach的上述结果相比。该度量理论对偶保持开放,但我们表明,$ \ text {homeo}([0,1]^d)$的元素集与无限$ d $ d $ d $ diblesional hausdorff措施不是haar null。我们表明,对于$ d \ ge 2 $,$ \ text {homeo}的通用元素([0,1]^d)$是单数,但不是很单数。我们还表明,对于$ d \ ge 2 $,几乎每个元素的$ \ text {homeo}([0,1]^d)的每个元素都是单数的,但是一组强烈的单数元素形成了所谓的haar矛盾集(haar null,haar null,null,也不是共同的null)。 最后,为了澄清情况,我们研究了几个变量地图的奇异性的各种可能定义,并探索它们之间的连接。

S. Banach pointed out that the graph of the generic (in the sense of Baire category) element of $\text{Homeo}([0,1])$ has length $2$. J. Mycielski asked if the measure theoretic dual holds, i.e., if the graph of all but Haar null many (in the sense of Christensen) elements of $\text{Homeo}([0,1])$ have length $2$. We answer this question in the affirmative. We call $f \in \text{Homeo}([0,1]^d)$ singular if it takes a suitable set of full measure to a nullset, and strongly singular if it is almost everywhere differentiable with singular derivative matrix. Since the graph of $f \in \text{Homeo}([0,1])$ has length $2$ iff $f$ is singular iff $f$ is strongly singular, the following results are the higher dimensional analogues of Banach's observation and our solution to Mycielski's problem. We show that for $d \ge 2$ the graph of the generic element of $\text{Homeo}([0,1]^d)$ has infinite $d$-dimensional Hausdorff measure, contrasting the above result of Banach. The measure theoretic dual remains open, but we show that the set of elements of $\text{Homeo}([0,1]^d)$ with infinite $d$-dimensional Hausdorff measure is not Haar null. We show that for $d \ge 2$ the generic element of $\text{Homeo}([0,1]^d)$ is singular but not strongly singular. We also show that for $d \ge 2$ almost every element of $\text{Homeo}([0,1]^d)$ is singular, but the set of strongly singular elements form a so called Haar ambivalent set (neither Haar null, nor co-Haar null). Finally, in order to clarify the situation, we investigate the various possible definitions of singularity for maps of several variables, and explore the connections between them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源