论文标题
几个变量的地图的奇异性和关于普遍同态的菌丝的问题
Singularity of maps of several variables and a problem of Mycielski concerning prevalent homeomorphisms
论文作者
论文摘要
S. Banach指出,$ \ text {HONEO}([0,1])$的通用图(从Baire类别的意义上)的图表具有$ 2 $。 J. Mycielski询问该度量理论二元组是否成立,即,除了$ \ text {homeo}(homeo}([0,1])$的所有图表(在Christensen的意义上,所有除去)是否具有$ 2 $。我们肯定地回答了这个问题。 我们将$ f \在\ text {homeo}中称为([0,1]^d)$单数,如果它对零子设置进行了合适的完整度量,并且如果几乎到处都可以与单数衍生矩阵区分,那么如果它几乎到处都可以区分。由于$ f \ in \ text {HONEO}([0,1])$具有长度$ 2 $ iff $ f $是单数的Iff $ f $非常单数,因此以下结果是Banach观察到的较高维度类似物,我们对Mycielski的问题的解决方案。 我们表明,对于$ d \ ge 2 $,$ \ text {homeo}的通用元素的图表([0,1]^d)$具有无限的$ d $ d $ diblesional hausdorff措施,与Banach的上述结果相比。该度量理论对偶保持开放,但我们表明,$ \ text {homeo}([0,1]^d)$的元素集与无限$ d $ d $ d $ diblesional hausdorff措施不是haar null。我们表明,对于$ d \ ge 2 $,$ \ text {homeo}的通用元素([0,1]^d)$是单数,但不是很单数。我们还表明,对于$ d \ ge 2 $,几乎每个元素的$ \ text {homeo}([0,1]^d)的每个元素都是单数的,但是一组强烈的单数元素形成了所谓的haar矛盾集(haar null,haar null,null,也不是共同的null)。 最后,为了澄清情况,我们研究了几个变量地图的奇异性的各种可能定义,并探索它们之间的连接。
S. Banach pointed out that the graph of the generic (in the sense of Baire category) element of $\text{Homeo}([0,1])$ has length $2$. J. Mycielski asked if the measure theoretic dual holds, i.e., if the graph of all but Haar null many (in the sense of Christensen) elements of $\text{Homeo}([0,1])$ have length $2$. We answer this question in the affirmative. We call $f \in \text{Homeo}([0,1]^d)$ singular if it takes a suitable set of full measure to a nullset, and strongly singular if it is almost everywhere differentiable with singular derivative matrix. Since the graph of $f \in \text{Homeo}([0,1])$ has length $2$ iff $f$ is singular iff $f$ is strongly singular, the following results are the higher dimensional analogues of Banach's observation and our solution to Mycielski's problem. We show that for $d \ge 2$ the graph of the generic element of $\text{Homeo}([0,1]^d)$ has infinite $d$-dimensional Hausdorff measure, contrasting the above result of Banach. The measure theoretic dual remains open, but we show that the set of elements of $\text{Homeo}([0,1]^d)$ with infinite $d$-dimensional Hausdorff measure is not Haar null. We show that for $d \ge 2$ the generic element of $\text{Homeo}([0,1]^d)$ is singular but not strongly singular. We also show that for $d \ge 2$ almost every element of $\text{Homeo}([0,1]^d)$ is singular, but the set of strongly singular elements form a so called Haar ambivalent set (neither Haar null, nor co-Haar null). Finally, in order to clarify the situation, we investigate the various possible definitions of singularity for maps of several variables, and explore the connections between them.