论文标题
从稀疏的心内膜图中心脏去极化的图形卷积回归
Graph convolutional regression of cardiac depolarization from sparse endocardial maps
论文作者
论文摘要
在室性心动过速的消融治疗中,经常获得的电工学映射是识别心律失常基质底物的金标准方法。为了减少采集时间并仍然提供高空间分辨率的地图,我们提出了一种基于图形卷积神经网络的新型深度学习方法,以估计心肌中的去极化时间,鉴于左心室心内膜,ECG和磁共振图像上的稀疏导管数据。该训练集由心脏电生理学计算模型产生的数据组成,这些数据模型在缺血性心脏的大量合成几何形状上。预测的去极化模式与心脏电生理模型在五个具有复杂疤痕和边界区形态的五个猪心脏几何形状的验证集中计算出的激活时间良好。当在500多个计算的去极化模式中提供50 \%的心内膜地面真相时,整个心肌的平均绝对误差在整个心肌上均为8 ms。此外,当考虑具有高密度电工映射数据的完整动物数据集作为参考时,神经网络也可以准确地再现心内膜去极化模式,即使将较小比例的测量值作为输入特征(平均绝对误差为7 ms,具有50 \%的输入示例))。结果表明,对合成生成数据训练的提出方法可能会推广到真实数据。
Electroanatomic mapping as routinely acquired in ablation therapy of ventricular tachycardia is the gold standard method to identify the arrhythmogenic substrate. To reduce the acquisition time and still provide maps with high spatial resolution, we propose a novel deep learning method based on graph convolutional neural networks to estimate the depolarization time in the myocardium, given sparse catheter data on the left ventricular endocardium, ECG, and magnetic resonance images. The training set consists of data produced by a computational model of cardiac electrophysiology on a large cohort of synthetically generated geometries of ischemic hearts. The predicted depolarization pattern has good agreement with activation times computed by the cardiac electrophysiology model in a validation set of five swine heart geometries with complex scar and border zone morphologies. The mean absolute error hereby measures 8 ms on the entire myocardium when providing 50\% of the endocardial ground truth in over 500 computed depolarization patterns. Furthermore, when considering a complete animal data set with high density electroanatomic mapping data as reference, the neural network can accurately reproduce the endocardial depolarization pattern, even when a small percentage of measurements are provided as input features (mean absolute error of 7 ms with 50\% of input samples). The results show that the proposed method, trained on synthetically generated data, may generalize to real data.