论文标题

计算二阶线性$ q $ -Difference方程的差分GALOIS组

Computing differential Galois groups of second-order linear $q$-difference equations

论文作者

Arreche, Carlos E., Zhang, Yi

论文摘要

我们将差异性Galois理论应用于Hardouin和Singer开发的差异方程式,以计算具有合理函数系数的二阶线性$ Q $ - 差异方程的差分Galois组。该GALOIS组编码方程解之间可能的多项式差异关系。我们将结果应用于计算几个混凝土$ Q $差异方程的差分Galois组,包括针对某个结的彩色琼斯多项式。

We apply the differential Galois theory for difference equations developed by Hardouin and Singer to compute the differential Galois group for a second-order linear $q$-difference equation with rational function coefficients. This Galois group encodes the possible polynomial differential relations among the solutions of the equation. We apply our results to compute the differential Galois groups of several concrete $q$-difference equations, including for the colored Jones polynomial of a certain knot.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源