论文标题
lafforgue伪chard和Galois代表限制的均等
Lafforgue pseudocharacters and parities of limits of Galois representations
论文作者
论文摘要
令$ f $为CM字段,具有完全真实的子字段$ f^+$,并且让$ c $ -c $ - algebraic cuspidal cuspidal自动形态自动形式表示$ \ mathrm {u}(a,a,b)(\ mathbf {a,a} _} _} _ {f^+})的limimecterial commenterate(\ mathbf {a,mathbf {a,a})。我们附加到$π$ a galois表示$r_π:\ mathrm {gal}(\ edlinef/ f/ f^+)\ to {}^c \ mathrm {u}(a,b)(\ overline {\ mathbf q} _ \ ell)ys $ conjugation $ conjugation $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ c $ r嗡嗡声 - 猜想。作为推论,我们推断出GALOIS表示与某些不规则的$ C $ -COUM-ALGEBRAIC(本质上是)共轭自二)自dual cuspidal cuspidal sutomorphic表示,$ \ mathrm {gl} _n(\ mathbf a_f)$在bellaïche-cheenevier中是奇怪的。
Let $F$ be a CM field with totally real subfield $F^+$ and let $π$ be a $C$-algebraic cuspidal automorphic automorphic representation of $\mathrm{U}(a,b)(\mathbf{A}_{F^+})$ whose archimedean components lie in the (non-degenerate limit of) discrete series. We attach to $π$ a Galois representation $R_π:\mathrm{Gal}(\overline F/ F^+)\to{}^C\mathrm{U}(a,b)(\overline{\mathbf Q}_\ell)$ such that, for any complex conjugation element $c$, $R_π(c)$ is as predicted by the Buzzard--Gee conjecture. As a corollary, we deduce that the Galois representations attached to certain irregular, $C$-algebraic (essentially) conjugate self-dual cuspidal automorphic representations of $\mathrm{GL}_n(\mathbf A_F)$ are odd in the sense of Bellaïche--Chenevier.