论文标题

识别具有任意域的概率加权ARX模型

Identification of Probability weighted ARX models with arbitrary domains

论文作者

Brusaferri, Alessandro, Matteucci, Matteo, Spinelli, Stefano

论文摘要

混合系统识别是从数据获得可靠模型的网络物理系统模型的关键工具。分段仿射模型可确保通用近似,局部线性和与其他类别混合系统的等效性。尽管如此,PWA识别还是一个具有挑战性的问题,需要同时解决回归和分类任务的解决方案。在这项工作中,我们专注于具有具有任意区域(NPWARX)的外源输入模型的分段自动回归的识别,因此不限于多面体结构域,并以不连续的图为特征。为此,我们提出了一种基于概率混合模型的方法,在该模型中,离散状态通过由输入回归器调节的多项式分布表示。根据机器学习领域中开发的专家概念的混合,该体系结构是构思的。为了实现非线性分区,我们使用神经网络对判别函数进行参数。然后,通过使用预期最大化来最大化整体模型的可能性,同时估算了ARX子模型和分类器的参数。在不连续地图的非线性零件问题上证明了该方法。

Hybrid system identification is a key tool to achieve reliable models of Cyber-Physical Systems from data. PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system. Still, PWA identification is a challenging problem, requiring the concurrent solution of regression and classification tasks. In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX), thus not restricted to polyhedral domains, and characterized by discontinuous maps. To this end, we propose a method based on a probabilistic mixture model, where the discrete state is represented through a multinomial distribution conditioned by the input regressors. The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field. To achieve nonlinear partitioning, we parametrize the discriminant function using a neural network. Then, the parameters of both the ARX submodels and the classifier are concurrently estimated by maximizing the likelihood of the overall model using Expectation Maximization. The proposed method is demonstrated on a nonlinear piece-wise problem with discontinuous maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源