论文标题

使用进化算法的基于距离基质的晶体结构预测

Distance Matrix based Crystal Structure Prediction using Evolutionary Algorithms

论文作者

Hu, Jianjun, Yang, Wenhui, Siriwardane, Edirisuriya M. Dilanga

论文摘要

无机材料的晶体结构预测(CSP)是材料科学和计算化学中的核心和最具挑战性的问题之一。该问题可以作为一个全球优化问题提出,其中全球搜索算法(例如遗传算法(GA)和粒子群优化)已与第一个原理自由能计算相结合,以预测仅给定材料组成或仅化学系统的晶体结构。这些基于DFT的AB始于CSP算法在计算上是要求的,并且只能用于预测相对较小的系统的晶体结构。巨大的坐标空间加上昂贵的DFT自由能计算限制了其效率和有效性。另一方面,在生物信息学的蛋白质结构预测群落中,已经同时研究了类似的结构预测问题,其中主导的预测因子是基于知识的方法,包括利用已知蛋白质结构的同源性建模和螺纹。在此,我们探讨了诸如目标晶体材料的成对原子距离之类的已知几何约束是否可以帮助预测/重建其结构,因为其空间群和晶格信息。我们提出了DMCrystal,这是一种基于预测的原子成对距离的基于遗传算法的晶体结构重建算法。基于广泛的实验,我们表明预测的距离矩阵可以极大地有助于重建晶体结构,并且通常比基于原子接触图的晶体结构预测算法CMCrystal的性能要好得多。这意味着可以使用从现有材料中学到的原子相互作用信息的知识来显着改善速度和质量方面的晶体结构预测。

Crystal structure prediction (CSP) for inorganic materials is one of the central and most challenging problems in materials science and computational chemistry. This problem can be formulated as a global optimization problem in which global search algorithms such as genetic algorithms (GA) and particle swarm optimization have been combined with first principle free energy calculations to predict crystal structures given only a material composition or only a chemical system. These DFT based ab initio CSP algorithms are computationally demanding and can only be used to predict crystal structures of relatively small systems. The vast coordinate space plus the expensive DFT free energy calculations limits their efficiency and effectiveness. On the other hand, a similar structure prediction problem has been intensively investigated in parallel in the protein structure prediction community of bioinformatics, in which the dominating predictors are knowledge based approaches including homology modeling and threading that exploit known protein structures. Herein we explore whether known geometric constraints such as the pairwise atomic distances of a target crystal material can help predict/reconstruct its structure given its space group and lattice information. We propose DMCrystal, a genetic algorithm based crystal structure reconstruction algorithm based on predicted atomic pairwise distances. Based on extensive experiments, we show that the predicted distance matrix can dramatically help to reconstruct the crystal structure and usually achieves much better performance than CMCrystal, an atomic contact map based crystal structure prediction algorithm. This implies that knowledge of atomic interaction information learned from existing materials can be used to significantly improve the crystal structure prediction in terms of both speed and quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源