论文标题
多个智能反射表面辅助无单元的MIMO通信
Multiple Intelligent Reflecting Surfaces Assisted Cell-Free MIMO Communications
论文作者
论文摘要
在本文中,我们研究了一个智能反射表面(IRS)辅助多个输入多重输出(MIMO)通信系统,该系统专门部署了分布式的多个IRS,以帮助分布式多个基站(BSS)进行合作传输。我们的目的是通过共同优化BSS处的主动传输光束矩阵和IRSS处的被动反映光束成型矩阵,而对每个BS的最大传输幂以及每个IRS元件的相位移位的最大传输率,则满足了无源反映光束成型的矩阵,从而最大化无单元系统的可实现的总和。我们提出了一个有效的框架,以共同设计BSS,IRS和用户设备(UES)。作为一种折衷的方法,我们首先根据分数编程方法将非凸问题转换为等效形式,然后将重新的问题分解为两个子问题,然后交替解决它们。特别是,我们提出了一种基于Lagrangian双重梯度的算法,以解决使用几乎封闭形式的溶液优化主动传输光束的子问题。我们重新制定了优化被动反映光束形成的子问题,作为恒定模量受约束的二次编程(CMC-QP)问题。我们首先通过提出一对基于放松的算法来提供两种可行的解决方案。我们还开发了一种低复杂性交替的顺序优化(ASO)算法,以获得封闭形式的溶液。保证所有三种算法都将收敛到本地最佳解决方案。仿真结果表明,与基准方案相比,所提出的算法可实现大量性能的改进。
In this paper, we investigate an intelligent reflecting surface (IRS) assisted cell-free multiple input multiple output (MIMO) communication system, where distributed multiple IRSs are dedicated deployed to assist distributed multiple base stations (BSs) for cooperative transmission. Our objective is to maximize the achievable sum-rate of the cell-free system by jointly optimizing the active transmit beamforming matrices at BSs and the passive reflecting beamforming matrices at IRSs, while the constraints on the maximum transmit power of each BS and the phase shift of each IRS element are satisfied. We propose an efficient framework to jointly design the BSs, the IRSs, and the user equipment (UEs). As a compromise approach, we first transform the non-convex problem into an equivalent form based on the fractional programming methods and then decompose the reformulated problem into two subproblems and solve them alternately. Particularly, we propose a Lagrangian dual sub-gradient based algorithm to solve the subproblem of optimizing the active transmit beamforming with nearly closed-form solutions. We reformulate the subproblem of optimizing the passive reflecting beamforming as a constant modulus constrained quadratic programming (CMC-QP) problem. We first provide two feasible solutions by proposing a pair of relaxation-based algorithms. We also develop a low-complexity alternating sequential optimization (ASO) algorithm to obtain closed-form solutions. All three algorithms are guaranteed to converge to locally optimal solutions. Simulation results demonstrate that the proposed algorithms achieve considerable performance improvements compared with the benchmark schemes.