论文标题

使用级联的卷积神经网络在3D CT图像中自动分割,定位和识别椎骨

Automatic Segmentation, Localization, and Identification of Vertebrae in 3D CT Images Using Cascaded Convolutional Neural Networks

论文作者

Masuzawa, Naoto, Kitamura, Yoshiro, Nakamura, Keigo, Iizuka, Satoshi, Simo-Serra, Edgar

论文摘要

本文介绍了一种自动分割,定位和识别椎骨在任意3D CT图像中的方法。即使需要先验了解解剖学的哪一部分在3D CT图像中可以看到的部分,许多以前的作品也没有同时执行这三个任务。我们的方法在单个多阶段框架中处理所有这些任务,而没有任何假设。在第一阶段,我们训练一个3D完全卷积的网络,以找到颈椎,胸腔和腰椎的边界框。在第二阶段,我们训练一个迭代3D完全卷积网络,以分段边界框中的单个椎骨。除3D CT图像外,第二个网络的输入还具有辅助通道。鉴于辅助通道中的分段椎骨区域,网络输出下一个椎骨。通过分割,定位和识别精度评估了所提出的方法,其中两个公共数据集和来自Miccai CSI 2014 2014年研讨会挑战的15个3D CT图像和302 3D CT图像,以及[1]中引入各种病理的302 3D CT图像。我们的方法达到的平均骰子得分为96%,平均定位误差为8.3 mm,平均识别率为84%。总而言之,在所有三个指标中,我们的方法都比所有现有作品都取得了更好的性能。

This paper presents a method for automatic segmentation, localization, and identification of vertebrae in arbitrary 3D CT images. Many previous works do not perform the three tasks simultaneously even though requiring a priori knowledge of which part of the anatomy is visible in the 3D CT images. Our method tackles all these tasks in a single multi-stage framework without any assumptions. In the first stage, we train a 3D Fully Convolutional Networks to find the bounding boxes of the cervical, thoracic, and lumbar vertebrae. In the second stage, we train an iterative 3D Fully Convolutional Networks to segment individual vertebrae in the bounding box. The input to the second networks have an auxiliary channel in addition to the 3D CT images. Given the segmented vertebra regions in the auxiliary channel, the networks output the next vertebra. The proposed method is evaluated in terms of segmentation, localization, and identification accuracy with two public datasets of 15 3D CT images from the MICCAI CSI 2014 workshop challenge and 302 3D CT images with various pathologies introduced in [1]. Our method achieved a mean Dice score of 96%, a mean localization error of 8.3 mm, and a mean identification rate of 84%. In summary, our method achieved better performance than all existing works in all the three metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源