论文标题
具有非负曲率的流形的Sobolev不平等现象
Sobolev inequalities in manifolds with nonnegative curvature
论文作者
论文摘要
我们证明对具有非负RICCI曲率的歧管上的sobolev不平等。此外,我们证明了非负分段曲率的歧管中的子曼佛群岛的迈克尔·西蒙(Michael-Simon)不平等。两种不平等取决于环境歧管的渐近体积比。
We prove a sharp Sobolev inequality on manifolds with nonnegative Ricci curvature. Moreover, we prove a Michael-Simon inequality for submanifolds in manifolds with nonnegative sectional curvature. Both inequalities depend on the asymptotic volume ratio of the ambient manifold.