论文标题

稳定的肘部,双碳子和barycenter

Stable cubulations, bicombings, and barycenters

论文作者

Durham, Matthew G., Minsky, Yair N., Sisto, Alessandro

论文摘要

我们证明,在映射类组和Teichmüller空间中,有限点的分层船体稳定地近似于CAT(0)立方体复合物,从而增强了Behrstock-Hagen-Sisto的结果。作为应用,我们证明映射类是半原子的,而Teichmüller空间则是可叠加的,并且都允许稳定的粗barycenters。我们的结果适用于更广泛的“可着色”分层双曲线空间和组。

We prove that the hierarchical hulls of finite sets of points in mapping class groups and Teichmüller spaces are stably approximated by a CAT(0) cube complexes, strengthening a result of Behrstock-Hagen-Sisto. As applications, we prove that mapping class groups are semihyperbolic and Teichmüller spaces are coarsely equivariantly bicombable, and both admit stable coarse barycenters. Our results apply to the broader class of "colorable" hierarchically hyperbolic spaces and groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源