论文标题

周期性解决方案的存在和线性稳定性,用于自由边界问题,以周期性的外部营养供应肿瘤生长建模

The existence and linear stability of periodic solution for a free boundary problem modeling tumor growth with a periodic supply of external nutrients

论文作者

He, Wenhua, Xing, Ruixiang

论文摘要

我们研究了一个自由边界问题,以T-周期性供应$φ(t)$的外部营养物质建模肿瘤生长。该模型包含两个参数$μ$和$ \widetildeσ$。我们首先证明(i)零径向对称解时且仅当$ \widetildeσ\ ge \ frac {1} {t} {t} \ int_ {0}^{t}φ(t}φ(t)d t t $ (ii)如果$ \wideTildeσ<\ frac {1} {t} \ int_ {0}^{t}^{t}φ(t)d t $,则存在一个唯一的径向对称的积极解决方案$ \ left(σ_{*}(r,t),p _ {p _ {p _ {*} $}(p _ { $ t $,它是所有$μ> 0 $的所有积极径向对称解决方案的全球吸引子。这些结果是Bai和Xu [pac的开放问题的完美答案。 J. Appl。数学。 2013(5),217-223]。然后,考虑非放射对称的扰动,我们证明存在一个常数的$μ_{\ ast}> 0 $ 0 $,使得$ \ weft(σ_{*}(r,t)(r,t),p _ {*}(r,t),r _ {*}(t),r _ {*}(t)\ right)对于$μ>μ_ {\ ast} $线性不稳定。

We study a free boundary problem modeling tumor growth with a T-periodic supply $Φ(t)$ of external nutrients. The model contains two parameters $μ$ and $\widetildeσ$. We first show that (i) zero radially symmetric solution is globally stable if and only if $\widetildeσ\ge \frac{1}{T} \int_{0}^{T} Φ(t) d t$; (ii) If $\widetildeσ<\frac{1}{T} \int_{0}^{T} Φ(t) d t$, then there exists a unique radially symmetric positive solution $\left(σ_{*}(r, t), p_{*}(r, t), R_{*}(t)\right)$ with period $T$ and it is a global attractor of all positive radially symmetric solutions for all $μ>0$. These results are a perfect answer to open problems in Bai and Xu [Pac. J. Appl. Math. 2013(5), 217-223]. Then, considering non-radially symmetric perturbations, we prove that there exists a constant $μ_{\ast}>0$ such that $\left(σ_{*}(r, t), p_{*}(r, t), R_{*}(t)\right)$ is linearly stable for $μ<μ_{\ast}$ and linearly unstable for $μ>μ_{\ast}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源