论文标题

使用均匀平衡法的Balitsky-Kovchegov方程的分析解决方案

An Analytical Solution of the Balitsky-Kovchegov Equation with the Homogeneous Balance Method

论文作者

Wang, Xiaopeng, Yang, Yirui, Kou, Wei, Wang, Rong, Chen, Xurong

论文摘要

非线性QCD进化方程是理解小bjorken $ x _ {\ rm b} $饱和的重要工具,因为它们应该恢复高能量散射的横截面上的单位性上限。在本文中,我们使用均匀平衡方法提出了Balitsky-Kovchegov(BK)方程的分析解决方案。所获得的分析溶液类似于行驶波的溶液。通过匹配稀释区域中的GLUON分布,该区域是根据实验数据的全局分析(CT14分析)确定的,我们可以在动量空间中获得偶极 - 普罗顿正向散射幅度的确定解。基于获得的散射幅度和几何缩放的行为,我们还提出了一个新的估计饱和量表$ q_s^2(x)$。

Nonlinear QCD evolution equations are essential tools in understanding the saturation of partons at small Bjorken $x_{\rm B}$, as they are supposed to restore an upper bound of unitarity for the cross section of high energy scattering. In this paper, we present an analytical solution of Balitsky-Kovchegov (BK) equation using the homogeneous balance method. The obtained analytical solution is similar to the solution of a traveling wave. By matching the gluon distribution in the dilute region which is determined from the global analysis of experimental data (CT14 analysis), we get a definitive solution of the dipole-proton forward scattering amplitude in the momentum space. Based on the acquired scattering amplitude and the behavior of geometric scaling, we present also a new estimated saturation scale $Q_s^2(x)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源