论文标题

轻量级辅助技术:可穿戴的光纤姿态识别系统

Lightweight assistive technology: A wearable, optical-fiber gesture recognition system

论文作者

Seshan, Sanjay

论文摘要

该项目的目的是创建一种廉价,轻巧,可穿戴的辅助设备,该设备可以足够准确地测量手指运动,以识别一系列手势。一种最终的应用是为听力受损提供辅助技术和手语检测。我的系统称为Lite(基于光基技术),使用嵌入腕带中的光纤。手腕是频带的最佳位置,因为即使在手势执行手势时,光纤中的光传播也受到手腕中肌腱的轻微运动的影响。原型包含光依赖性电阻,以测量这些光传播变化。在创建Lite时,我考虑了各种纤维材料,光频率和物理形状,以优化肌腱运动检测,以便它可以与不同的手势准确地相关。我实施并评估了两种手势识别方法。第一个使用一种算法,将传感器读数的平均移动平均值与手势传感器读取标志结合在一起来确定当前手势。第二种使用在标有一组手势读数的标记的神经网络中识别手势。使用基于签名的方法,我能够在识别不同的手势方面达到99.8%的精度。使用神经网络识别精度为98.8%。这表明使用这两种方法都可以可行,这表明高精度是可行的。结果表明,使用基于光纤传感器的这种新颖方法是创建手势识别系统的有希望的第一步。

The goal of this project is to create an inexpensive, lightweight, wearable assistive device that can measure hand or finger movements accurately enough to identify a range of hand gestures. One eventual application is to provide assistive technology and sign language detection for the hearing impaired. My system, called LiTe (Light-based Technology), uses optical fibers embedded into a wristband. The wrist is an optimal place for the band since the light propagation in the optical fibers is impacted even by the slight movements of the tendons in the wrist when gestures are performed. The prototype incorporates light dependent resistors to measure these light propagation changes. When creating LiTe, I considered a variety of fiber materials, light frequencies, and physical shapes to optimize the tendon movement detection so that it can be accurately correlated with different gestures. I implemented and evaluated two approaches for gesture recognition. The first uses an algorithm that combines moving averages of sensor readings with gesture sensor reading signatures to determine the current gesture. The second uses a neural network trained on a labelled set of gesture readings to recognize gestures. Using the signature-based approach, I was able to achieve a 99.8% accuracy at recognizing distinct gestures. Using the neural network the recognition accuracy was 98.8%. This shows that high accuracy is feasible using both approaches. The results indicate that this novel method of using fiber optics-based sensors is a promising first step to creating a gesture recognition system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源