论文标题
绘制掺杂氧气掺杂的Wurtzite铝氮化铝涂料的结构。
Mapping the Structure of Oxygen-Doped Wurtzite Aluminum Nitride Coatings From Ab Initio Random Structure Search and Experiments
论文作者
论文摘要
机器学习正在改变我们在材料科学中设计和解释实验的方式。在这项工作中,我们展示了无监督的学习如何与从头算建模相结合,可以提高我们对多组分合金中结构稳定性的理解。我们使用Al-O-N合金的示例病例,其中掺入替代氧后Wurtzite Aln中铝空位的形成是固体的一般机制,其中降低了晶体对称性以稳定缺陷。理想的Aln Wurtzite晶体结构占用是由于结构中存在Aliovalent异质元素而无法匹配的。 X射线衍射(XRD)实验中C晶格收缩的传统解释表明,在8AT。%氧含量时存在溶解度极限。在这里,我们表明这种天真的解释是误导性的。我们通过对Ab Initible模拟和正电子歼灭寿命光谱数据进行机器学习分析来支持XRD数据,从而显示出可能溶解度极限的迹象。取而代之的是,在增加氧含量时出现的各种非平衡氧的缺陷结构的存在表明,晶界的形成是导致在Al-O-N溅射膜中测得的晶格收缩的最合理的机制。
Machine learning is changing how we design and interpret experiments in materials science. In this work, we show how unsupervised learning, combined with ab initio modeling, improves our understanding of structural metastability in multicomponent alloys. We use the example case of Al-O-N alloys where the formation of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxygen can be seen as a general mechanism of solids where crystal symmetry is reduced to stabilize defects. The ideal AlN wurtzite crystal structure occupation cannot be matched due to the presence of an aliovalent hetero-element into the structure. The traditional interpretation of the c-lattice shrinkage in sputter-deposited Al-O-N films from X-ray diffraction (XRD) experiments suggests the existence of a solubility limit at 8at.% oxygen content. Here we show that such naive interpretation is misleading. We support XRD data with a machine learning analysis of ab initio simulations and positron annihilation lifetime spectroscopy data, revealing no signs of a possible solubility limit. Instead, the presence of a wide range of non-equilibrium oxygen-rich defective structures emerging at increasing oxygen contents suggests that the formation of grain boundaries is the most plausible mechanism responsible for the lattice shrinkage measured in Al-O-N sputtered films.